Monday, July 31, 2006

Tiny "Designer Microbes" - A Greater Terror WMD

It has been five years since the first of the Anthrax terror scares where all of us were made aware of the effectiveness of bioterrorism.

Since then, a new technology has made it easier to genetically modify microbes and even create new ones from scratch. One doesn't even need living material to make up a batch of "designer microbes" that could wreak havoc and create emotional terror - the war effect we worry about from nuclear "dirty bombs", but much easier to make up and dispatch.

Excerpts from the Washington Post -

Custom-Built Pathogens Raise Bioterror Fears
By Joby Warrick - Washington Post Staff Writer - Monday, July 31, 2006; Page A01

STONY BROOK, N.Y. - Eckard Wimmer knows of a shortcut terrorists could someday use to get their hands on the lethal viruses that cause Ebola and smallpox. He knows it exceptionally well, because he discovered it himself.

In 2002, the German-born molecular geneticist startled the scientific world by creating the first live, fully artificial virus in the lab. It was a variation of the bug that causes polio, yet different from any virus known to nature. And Wimmer built it from scratch.

The virus was made wholly from nonliving parts, using equipment and chemicals on hand in Wimmer's small laboratory at the State University of New York here on Long Island. The most crucial part, the genetic code, was picked up for free on the Internet. Hundreds of tiny bits of viral DNA were purchased online, with final assembly in the lab.

Wimmer intended to sound a warning, to show that science had crossed a threshold into an era in which genetically altered and made-from-scratch germ weapons were feasible. But in the four years since, other scientists have made advances faster than Wimmer imagined possible. Government officials, and scientists such as Wimmer, are only beginning to grasp the implications.

----
Five years ago, deadly anthrax attacks forced Americans to confront the suddenly real prospect of bioterrorism. Since then the Bush administration has poured billions of dollars into building a defensive wall of drugs, vaccines and special sensors that can detect dangerous pathogens. But already, technology is hurtling past it. While government scientists press their search for new drugs for old foes such as classic anthrax, a revolution in biology has ushered in an age of engineered microbes and novel ways to make them.
----
"The biological weapons threat is multiplying and will do so regardless of the countermeasures we try to take," said Steven M. Block, a Stanford University biophysicist and former president of the Biophysical Society. "You can't stop it, any more than you can stop the progress of mankind. You just have to hope that your collective brainpower can muster more resources than your adversaries'."

The Bush administration has acknowledged the evolving threat, and last year it appointed a panel of scientists to begin a years-long study of the problem. It also is building a large and controversial lab in Frederick, where new bioterrorism threats can be studied and tested. But overall, specific responses have been few and slow.

The U.S. Centers for Disease Control and Prevention has declined so far to police the booming gene-synthesis industry, which churns out made-to-order DNA to sell to scientists. Oversight of controversial experiments remains voluntary and sporadic in many universities and private labs in the United States, and occurs even more rarely overseas.

----
"There's a name for fixed defenses that can easily be outflanked: They are called Maginot lines," said Roger Brent, a California molecular biologist and former biodefense adviser to the Defense Department, referring to the elaborate but short-sighted network of border fortifications built by France after World War I to prevent future invasions by Germany.
----
How to Make a Virus

Wimmer's artificial virus looks and behaves like its natural cousin -- but with a far reduced ability to maim or kill -- and could be used to make a safer polio vaccine. But it was Wimmer's techniques, not his aims, that sparked controversy when news of his achievement hit the scientific journals.

As the creator of the world's first "de novo" virus -- a human virus, at that -- Wimmer came under attack from other scientists who said his experiment was a dangerous stunt. He was accused of giving ideas to terrorists, or, even worse, of inviting a backlash that could result in new laws restricting scientific freedom.

----
Wimmer's method starts with the virus's genetic blueprint, a code of instructions 7,441 characters long. Obtaining it is the easiest part: The entire code for poliovirus, and those for scores of other pathogens, is available for free on the Internet.

Armed with a printout of the code, Wimmer places an order with a U.S. company that manufactures custom-made snippets of DNA, called oglionucleotides. The DNA fragments arrive by mail in hundreds of tiny vials, enough to cover a lab table in one of Wimmer's three small research suites.

Using a kind of chemical epoxy, the scientist and his crew of graduate assistants begin the tedious task of fusing small snippets of DNA into larger fragments. Then they splice together the larger strands until the entire sequence is complete.


The final step is almost magical. The finished but lifeless DNA, placed in a broth of organic "juice" from mushed-up cells, begins making proteins. Spontaneously, it assembles the trappings of a working virus around itself.
----
The technology envisions new species of microbes built from the bottom up: "living machines from off-the-shelf chemicals" to suit the needs of science, said Jonathan Tucker, a bioweapons expert with the Washington-based Center for Non-Proliferation Studies.

"It is possible to engineer living organisms the way people now engineer electronic circuits," Tucker said. In the future, he said, these microbes could produce cheap drugs, detect toxic chemicals, break down pollutants, repair defective genes, destroy cancer cells and generate hydrogen for fuel.

In less than five years, synthetic biology has gone from a kind of scientific parlor trick, useful for such things as creating glow-in-the-dark fish, to a cutting-edge bioscience with enormous commercial potential, said Eileen Choffnes, an expert on microbial threats with the National Academies' Institute of Medicine. "Now the technology can be even done at the lab bench in high school," she said.

----
A Darker Side

In May, when 300 synthetic biologists gathered in California for the second national conference in the history of their new field, they found protesters waiting.

"Scientists creating new life forms cannot be allowed to act as judge and jury," Sue Mayer, a veterinary cell biologist and director of GeneWatch UK, said in a statement signed by 38 organizations.

Activists are not the only ones concerned about where new technology could lead. Numerous studies by normally staid panels of scientists and security experts have also warned about the consequences of abuse. An unclassified CIA study in 2003 titled "The Darker Bioweapons Future" warned of a potential for a "class of new, more virulent biological agents engineered to attack" specific targets. "The effects of some of these engineered biological agents could be worse than any disease known to man," the study said.

----
"The capability of terrorists to embark on this path in the near- to mid-term is judged to be low," Charles E. Allen, chief intelligence officer for the Department of Homeland Security, said in testimony May 4 before a panel of the House Committee on Homeland Security. "Just because the technology is available doesn't mean terrorists can or will use it."

A far more likely source, Allen said, is a "lone wolf": a scientist or biological hacker working alone or in a small group, driven by ideology or perhaps personal demons. Many experts believe the anthrax attacks of 2001 were the work of just such a loner.
----
A 2004 National Academy of Sciences report recommended that the committees take on a larger role in policing research that could lead to more powerful biological weapons.

In reality, many of these boards appear to exist only on paper. In 2004, the nonprofit Sunshine Project surveyed 390 such committees, asking for copies of minutes or notes from any meetings convened to evaluate research projects. Only 15 institutions earned high marks for showing full compliance with NIH guidelines, said Edward Hammond, who directed the survey. Nearly 200 others who responded had poor or missing records or none at all, he said. Some committees had never met.
----

"We haven't yet absorbed the magnitude of this threat to national security," said O'Toole, who worries that the national commitment to biodefense is waning over time and the rise of natural threats such as pandemic flu. "It is true that pandemic flu is important, and we're not doing nearly enough, but I don't think pandemic flu could take down the United States of America. A campaign of moderate biological attacks could."
Read All>> (free subscription)

No comments: